Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels

Identifieur interne : 001E54 ( Main/Exploration ); précédent : 001E53; suivant : 001E55

Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels

Auteurs : Jeffrey A. Kornuta [Géorgie (pays)] ; Zhanna Nepiyushchikh [Géorgie (pays)] ; Olga Y. Gasheva [États-Unis] ; Anish Mukherjee [Géorgie (pays)] ; David C. Zawieja [États-Unis] ; J. Brandon Dixon [Géorgie (pays)]

Source :

RBID : PMC:4666954

Abstract

Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm2) than at 3 cmH2O (0.64 dyne/cm2). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels.


Url:
DOI: 10.1152/ajpregu.00342.2014
PubMed: 26333787
PubMed Central: 4666954


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels</title>
<author>
<name sortKey="Kornuta, Jeffrey A" sort="Kornuta, Jeffrey A" uniqKey="Kornuta J" first="Jeffrey A." last="Kornuta">Jeffrey A. Kornuta</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nepiyushchikh, Zhanna" sort="Nepiyushchikh, Zhanna" uniqKey="Nepiyushchikh Z" first="Zhanna" last="Nepiyushchikh">Zhanna Nepiyushchikh</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gasheva, Olga Y" sort="Gasheva, Olga Y" uniqKey="Gasheva O" first="Olga Y." last="Gasheva">Olga Y. Gasheva</name>
<affiliation wicri:level="2">
<nlm:aff id="aff5">Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, Texas</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mukherjee, Anish" sort="Mukherjee, Anish" uniqKey="Mukherjee A" first="Anish" last="Mukherjee">Anish Mukherjee</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff wicri:cut="; and" id="aff4">School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zawieja, David C" sort="Zawieja, David C" uniqKey="Zawieja D" first="David C." last="Zawieja">David C. Zawieja</name>
<affiliation wicri:level="2">
<nlm:aff id="aff5">Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, Texas</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J. Brandon" last="Dixon">J. Brandon Dixon</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26333787</idno>
<idno type="pmc">4666954</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666954</idno>
<idno type="RBID">PMC:4666954</idno>
<idno type="doi">10.1152/ajpregu.00342.2014</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000246</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000246</idno>
<idno type="wicri:Area/Pmc/Curation">000246</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000246</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001309</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">001309</idno>
<idno type="wicri:Area/Ncbi/Merge">007832</idno>
<idno type="wicri:Area/Ncbi/Curation">007832</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">007832</idno>
<idno type="wicri:doubleKey">0363-6119:2015:Kornuta J:effects:of:dynamic</idno>
<idno type="wicri:Area/Main/Merge">001E57</idno>
<idno type="wicri:Area/Main/Curation">001E54</idno>
<idno type="wicri:Area/Main/Exploration">001E54</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels</title>
<author>
<name sortKey="Kornuta, Jeffrey A" sort="Kornuta, Jeffrey A" uniqKey="Kornuta J" first="Jeffrey A." last="Kornuta">Jeffrey A. Kornuta</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nepiyushchikh, Zhanna" sort="Nepiyushchikh, Zhanna" uniqKey="Nepiyushchikh Z" first="Zhanna" last="Nepiyushchikh">Zhanna Nepiyushchikh</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gasheva, Olga Y" sort="Gasheva, Olga Y" uniqKey="Gasheva O" first="Olga Y." last="Gasheva">Olga Y. Gasheva</name>
<affiliation wicri:level="2">
<nlm:aff id="aff5">Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, Texas</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mukherjee, Anish" sort="Mukherjee, Anish" uniqKey="Mukherjee A" first="Anish" last="Mukherjee">Anish Mukherjee</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff wicri:cut="; and" id="aff4">School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zawieja, David C" sort="Zawieja, David C" uniqKey="Zawieja D" first="David C." last="Zawieja">David C. Zawieja</name>
<affiliation wicri:level="2">
<nlm:aff id="aff5">Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, Texas</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J. Brandon" last="Dixon">J. Brandon Dixon</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">American Journal of Physiology - Regulatory, Integrative and Comparative Physiology</title>
<idno type="ISSN">0363-6119</idno>
<idno type="eISSN">1522-1490</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH
<sub>2</sub>
O (0.97 dyne/cm
<sup>2</sup>
) than at 3 cmH
<sub>2</sub>
O (0.64 dyne/cm
<sup>2</sup>
). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels.</p>
</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Géorgie (pays)</li>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<country name="Géorgie (pays)">
<noRegion>
<name sortKey="Kornuta, Jeffrey A" sort="Kornuta, Jeffrey A" uniqKey="Kornuta J" first="Jeffrey A." last="Kornuta">Jeffrey A. Kornuta</name>
</noRegion>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J. Brandon" last="Dixon">J. Brandon Dixon</name>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J. Brandon" last="Dixon">J. Brandon Dixon</name>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J. Brandon" last="Dixon">J. Brandon Dixon</name>
<name sortKey="Kornuta, Jeffrey A" sort="Kornuta, Jeffrey A" uniqKey="Kornuta J" first="Jeffrey A." last="Kornuta">Jeffrey A. Kornuta</name>
<name sortKey="Mukherjee, Anish" sort="Mukherjee, Anish" uniqKey="Mukherjee A" first="Anish" last="Mukherjee">Anish Mukherjee</name>
<name sortKey="Mukherjee, Anish" sort="Mukherjee, Anish" uniqKey="Mukherjee A" first="Anish" last="Mukherjee">Anish Mukherjee</name>
<name sortKey="Nepiyushchikh, Zhanna" sort="Nepiyushchikh, Zhanna" uniqKey="Nepiyushchikh Z" first="Zhanna" last="Nepiyushchikh">Zhanna Nepiyushchikh</name>
<name sortKey="Nepiyushchikh, Zhanna" sort="Nepiyushchikh, Zhanna" uniqKey="Nepiyushchikh Z" first="Zhanna" last="Nepiyushchikh">Zhanna Nepiyushchikh</name>
</country>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Gasheva, Olga Y" sort="Gasheva, Olga Y" uniqKey="Gasheva O" first="Olga Y." last="Gasheva">Olga Y. Gasheva</name>
</region>
<name sortKey="Zawieja, David C" sort="Zawieja, David C" uniqKey="Zawieja D" first="David C." last="Zawieja">David C. Zawieja</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     PMC:4666954
   |texte=   Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26333787" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024